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The Theory of Free Electron Lasers
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I. INTRODUCTION

<3

The class of free electron |asers (FELs) mk whlch a pump ﬁeld is scattered from a relativis-
tic electron beam is of great mterest as a potennal hlgh-power, tunable source pf ;oherem radi-
auon pamcularly in the mfrared vnsnble and uItra-vnolet spectral reglons The conoept mvolves
the shmulated backscatter of a pump wave from a relativistic electron beam The pump wave
may be either an electromagnetic wave or a static periodic electric or magnetic field. For a stat-
ic periodic pump wave, the backscattered radiation frequency {rom a relativistic electron beam
is o= (148,)y2p.c ky = 2ylc k,, where .c8, = v is.-the axial drifting beam velocity,
y: = (1=BD 72, k, =2w/l-and .t js. the period, of.the pump wave. The modulated source
currents for the cohe;gn;.sg,a}tgred:;mjgtion are generated by axial bunching of the electron
beam at the radiation wavelength through coupling of the scattered waves and the pump field.
The mechanism responsible for this, axial bunching; is the ponderomotive force acting on the

electrons in the combined fields of the pump and radiation waves. .

Analysis and desngn consnderatnons pemmmg to the smgle pamcle scattermg process have
been carried out, both clmncally' ~M and quantum-mechamcally 1511 When the electron beam
is mﬂlciently mtense, collectwe eﬂ'ects become |mpomnt and mdeed may dommate the pto-
cess. Linear malysis of the 'FEL have been performed'i‘ncludin'g‘éolleclive effects,*# 12.14.18-2¢
and scattering efficiencies have been derived for ;rar.ious‘v;fi; s‘atté;i?ng mjims.’:;~ .10

"v.' MRS - 4 $e " - w %

Manuscript submitted 26 June 1979.
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SPRANGLE AND SMITH

Free clectron laser experiments with pulsed intense relativistic electron beams have been
conducted at a number of laboratories.?*~% Submillimeter radiation at MW power levels were
generated with electron begms of energies up to a few MeV and currents in the multi k4 range.
In these experiments collective eﬂ;ecls piay a 'dominant role in '.the scattering mechanism be-

cause of the high beam currents.

In another class of FEL experiments at Stanford University,>'-3? relatively low current,
high energy beams were employed (/o~24, 2§MeV < Ey < 43MeV). In these tenuous beam
experiments collective effects are negligible and single-particle scattering physics apply. Operat-
ing in the oscillator mode,? peak powers of ~7kW at 3.4 um were generated with an efficiency

of ~ 0.01%.

In this paper we present a general analysis of the FEL process utilizing a right handed cir-

cularly polarized, spatially periodic magnetic pump. A schematic of the FEL configuration is

‘shown in Fig. (l). The analysis is fully relativistic and performed explicitly in the ‘Iabomory

frame. . Our formulation shows that depending on the beam and pump parameters, several dis-
tinct interaction processes can be distinguished. Our results are applicable to both the tenuous
and intense beam type experiments. Growth rates (or gains) together with saturation
efficiencies are derived for the various FEL regimes. A condition for the neglect of collective
effects for the low gain FEL process is derived. Scaling laws for the growth rates and
efficiencies at a fixed output frequency, as a function of the pump amplitude are given. The de-
trimental veﬂ'ect (;f axial velocity shear on the beam due to self fields is discussed and various
methods of r@ucin; this shear are suggested. In addition, an illustration of a far infrared two-
stage FEL using a 3 MeV electron beam is presented. Here the output radiation wavelength is
decreased approximateiy by the factor 8 y! compared to the pump wavelength instead of the
factor 2 y? for a single stage FEL.
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II. DERIVATION OF GENERAL FEL DISPERSION RELATION

The pump is chosen to be a right handed circularly polarized magnetic field given for z >

Oby .

B, = B,(¢,cos(k,z) + &,sin(k,2)), )

where B, ‘is constant and k, = 2w/, see Fig. (1). The representation of the pump field in (1)
is a good approximation near the axis of an appropriate coil winding. The vector potential asso-
ciated with B, is A, = —B,,/k,,. For particles in the field given by (1), the canonical momenta
in the x nn.d' y directions as well as the total momentum are constants of the motion and are

given respectively 4by

alp,, z) = p, — -l%l-A..x(z). . (2a)
B(p,. 2) = p, - -Le;l A(2), : (2b)
u(p) = |pl, (2¢)

where p is the momentum,

We assume that the interaction between the relativistic electron beam and the pump field
has reached the temporal steady state so that the radiation fields are proportional to exp(—iwt)

where w is the frequency of radiation. The radiation and space charge fields are given by

BG.o = 11-38) 5 1 1% Gy 6 4 e+ e

T B(z 1) - --21

2D @+ e+ ce e




SPRANGLE AND SMITH

where the associated potentials are ¢(z.“t)' =(1/2) (2) eXp(—inr) +cc and Az = (1/2)

A(2) (&, + i) exp(—iwt) + c.c.

Using the relativistic Vlasov equation we expand the electron distribution function to first
order in the scattered fields E and B about its equilibrium. It proves very convenient first to
transform the independent variable (p, z, 1) of the distribution function to the new indepen-

dent variable (a, 8, u, z ). The electron distribution is then written as
gla, B, u z ) =g%a, B w+g"e B uz) )

where g@(a, B, u) is the equilibrium distribution and is an arbitrary function of the constants
of the motion and g(a, B, u, z 1) is the perturbed part of the distribution which is propor-
tional to either ¢ or A. It is straightforward to show that the perturbed part of the Viasov

equation for g'" is

m 2 M =
%f-— + ;%— -g—s— =H e '+ cc (5)
where
7 - O 11 || PR N ) LR &
H = H(a, B, u, 2) e iw = v. o A = + i 8
; - 3|t 3| o
+ |liwp_ A = cp- s b g (6
and the dependent variables are

v. = v.a, B, u, 2) =p.la, B u 2)/(y(u) m,).

|¢| Bn ik,z
e

p.=pla, B 2)=p+ip,=a+iB-

ck,
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2, =pla, B, u, z) = (u2 = p2—pH'?,

Py ™ Px(a. z2) =a+ ‘I'%L A“(Z), , : g
b=n® 0=+l 4,0,

vy =y(u) =1+ u¥(m2cH)"2. (7a-N ;

The general solution of Eq. (5) is

RO e

where
V=3V, B uz)=- f_: dz'M(a, B, u, 2, ) H(a, B, u, 2, ®)
v eior(a.ﬁ.u.:.z‘)
M(a, B, u 2 2)= W.
and

&"

o B n )= oty

The beam has been taken to be unperturbed at z = —oo, i.e., " (a, B, u, —0) = 0.

Rearranging Eq. (8), the Fourier transform of the perturbed part of the distribution func-

: tion becomes

S .0
% * 6

i G.a, B, u, Z)-:_a;l‘m(a' B.uw,

i%a, B, 4, 2) = lc'v'*(a.ﬁ,u.z)
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G,= 125‘!- f_: dz'M(a‘, B; u, 2, f) (im - v(a, B. u, 2 -ng-;l A2

weds 2oy (108)
2c

G = -I-zf;:l- % f_: dz'M(a, B, u, z 2') (iup-(a. B. 2 A(z")

~ep(a, B, ¥, ) 9—%‘—”—] . (10b)

In Eq. (10a) we have integrated by parts, using the fact that the radiation field vanishes at
z = —co, The expression for 2" in Eq. (9) determines the first order perturbation of the elec-
tron distribution function due to scattered ‘ﬁelds with arbitrary axial spatial dependence, is

correct to all orders in the pump field amplitude, and contains thermal effects in g,.

The perturbed current density whicﬁ"drives the scattered ﬁeids is given by

J(z, 1) = (J,(2) é, + J.(z) &)e~™ + c.c. (11)
where
1| LT T et [p;(a;p. 2) l Vg |
o —lel : ug (@ B u 2)
lJ,(z)l m, J; i f—- . f—- - p-(a, B, u, 2) y(w)p.a, B, u, 2)’ (i

where py(a, B, 2) = p, — ip, = a — iB — (|e| B,/ck,) exp(—ik,2), and &, = (&, + i&,)/2.

To evaluate the current density in (12), we take

w

8%, B, u) = n,8(a) 8(B) g,(u), 13)

N e P
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where n,. is the unperturbed beam density, assumed to be uniférm in space, and g,(u) is arbi-
trary but subject to the normalization condition J;” du g,(u) u/u, = 1. The delta functions for
a and B arise from assuming that the equilibrium transverse momentum is due solely to the
pump field, i.e., that transverse thermal effects can be neglected. Using the distribution func-
tion (13), we find, after some lengthy algebra, that the Fourier coefficients of the current densi-

ties given in (12) are

7 wh > u [y
1@ =g fy =m0 -0 A

uB-l ,wz)f I‘”(Z) S £ mplA( e "*(”] 2 lxo. (14a)

ou

ad
J.(z) = —-- - ™ J

d mz/v J‘ |8¢(z) —rmz'/v:+ ’WB.L Atz )e_,‘(z')l dg,/9u, (14b)

where  w, = (47n, le|¥m,)"?, B =B (w) = Q,/(y(u)v,(u)k,), Q,= le|B,/m,c,
¥(2) = (w/v.(u) = k)z, u,=u.(u) =p(a=0B=0,u 2) = (2~m2QYk)H"? and
v. = u./(y(u)m,). The limits of integration over z'are from 0 to z and not from —oo to z, be-
cause the amplitude of the various fields, i.e., 4,, é and A, are assumed to build up from zero
at z'= —oco to their initial values at z = -0 in a distance which is small compared to
(ki + k, — w/v.)~!, where k., is the wavenumber associated with 4 (z). The limits of integra-
tion over z'can therefore be changed from (—oo, z) to (0, 2) without loss of accuracy. Because
the characteristic length (k + k, = w/v.)~' is much longer than the wavelength of the pump
field, this situation is necessarily satisfied in any experimental configuration. The driving
current density in Eqs (14) contain: (i) the ponderomotive potential manifested in the term

B.A (2); (i) collective effects from the scalar potential; (iii) arbitrary axial variation of the




e
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SPRANGLE AND SMITH

excited fields ¢ and A; (iv) ballistic terms propagating from the boundary at z = 0 associated
with the lower limit on the z’integral; and (v) arbitrary thermal nature of the beam manifested

in g,(u).

The analysis is closed by taking the perturbed current density of Egs. (14) to be the

source current in the wave equations for A and ¢:

aZ p 4] [ —4 o
'é;z' + %— AQZ) = c" J.(2); (15a)
fele) S A=igy, (15b)
9z )

A number of different scattering regimes can be distinguished using the general form for the
driving currents expressed in Eqs. (14). We shall discuss in detail those regimes which appear

to be important for the development of efficient, high-power FEL’s.
II1. LOW GAIN LIMIT

The first case we consider is the low gain or short cavity regime, where collective effects
do not play a dominant role and the electromagnetic wave is nearly of constant amplitude. By
low gain limit we mean that the total integrated gain of the radiation field is much less than un-
ity. This limit corresponds to the parameter regime of the experiments carried out at Stanford
University®':32 with highly relativistic (<48 MeV;‘ low current (< 2.44) beams. Neglecting
collective effects implies that ¢(z) << A (z) <B,>; the condition on the beam density for this

inequality to be satisfied is given below. Taking the electromagnetic field to be of the form

() = 4 e Jokere (16)
where |Im(k,)| << Re(k,) and exp fo:dz'lm(k,(z')) = 1. With this representation, together

with (14a) and (15a), the dispersion relation takes the form
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kd, — w¥/c? + 2kq, 8k (2)

2 ilw/v,~(kg, + ko)) 2 i
-—wj ™ -_u— 7 o '_"2. 2 (l_e z 0+ ™. "0 ) -9— I
= J; a'u[_yu2 (1+82/2) 3 Blwv, w—v, (ks + 9 o0 go(w), (17)

where k,(z) = ko + 8k(z) , |8k| << ko, and ko, =2y2ck, real and constant. Solving for

the imaginary part of 8k (z) we obtain

27,2 o o i
Im(3k (2)) = — 22/ S au lﬂpz Wiy Ko thilz ] By a8)

T 3T el — k) du

The total integrated gain in the wave amplitude over the interaction region of length L is
L
defined as G, = — J; Im(8k(z'))dz’. It is straightforward to show that if the thermal energy

spread of the beam, E,,, is such that

j 'EfII/EO << 7:20 A/[4 » : : (19)

the beam can be considered to be mono-energetic in Eq. (18). In the above inequality
Eo= (yg—1) moc? = yomoc? is the total kinetic energy of each beam particle,
y-0= (1=v}/c?) "2 and A = 2m/k,, is the wavelength of the radiation field. For future use
we note that E, = yoy% mq v.oV,, where V,, is the beam thermal velocity. Assuming (19) to

be satisfied we can use the distribution function go(u) = (u./u)8(u—ug) and find that G, is

2/.2 : 2
e wi/c W o| sin(koy+ko—w/v.) L/2 M_
6= oy oL’ ), "“p*[ (kortko—w/WIL2 | Bu
¥ 2
R A i
| s Bd. (koL) FTN <1 (20)

where € = w,/(\fyoc ko), yo = ¥(ug), y:0 = v.(ug), By = B (ug), 8= (w/v.qg = kos—k,)L/2,

and u, is the magnitude of the total particle momentum. The function 3(sin8y/0,)?/90, has a

maximum value of 0.54 when 6,= —1.3, hence, the maximum total gain is
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GL.mx = (‘/4)25&1("014)3 (21)

and is much less than unity. Using Eq. (15b) in conjunction with Eq. (14b) we find that the

condition for neglecting collective effects, i.c., $(z) << 4(z) <B,> , can be written as

i(2 = (ko4 +ko))z 3
W) . “ (1—e * ) 9%
mol), du /v, — (koy + kg) Ou “k

which reduces to

2
<< 1. (22)

[eL ko
2720

The L? dependence in (22) is due to the dependence of the perturbed density on length. The

density modulations on the beam can be shown to increase as z? in our present limit.

It will be necessary to obtain the difference between the phase velocity of the ponderomo-
tive wave and the axial electron vélocity when deriving the saturation efficiency in Section V.

From the definition of 8, this velocity difference is simply

Sl
koo + ko 0 yLL ko

where ko, = 2y} ko >> ko and the value of 0, extends from 0 to =-3 for the domain of

(23)

Vo = V:o= —~Av =

maximum positive gain.

IV. HIGH GAIN LIMIT

In contrast to the first case we now consider the long cavity limit where the excited field
amplitude spatially exponentiates several times within the interaction region. Under these con-

ditions the terms containing the boundary conditions at z = 0 can be neglected, i.e.,




3
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#(0) << ¢(z) and 4(0) << A(z). We assume that conditions appropriate to a cold beam are
satisfied, hence g,(u) = (v,/u) 8(u — u,); we shall return to this point later. The potentials

can be represented by

() =0 e* - (242)

A@) = A" (24b)

where k = k, + k, and k, is complex. Substituting the potentials represented by (24) into Eqs
(14), in conjunction with the cold beam assumption, gnd making use of the wave equations

(15) we obtain the following dispersion relation for w and k:

2 2
D(w, k — k) (@ = vpk)? ~ w}/(y2y,)) = = 2"; % ﬁ—l D(w, k) Q5)

where D(w, k) = w? — c2k? — wdly,, vo = y(u,), v, = ﬁ,(u.,) and y,, = v,(4,). The elec-
tromagnetic wave approximately satisfies the 'dispersion relation D(w, k, = k- k,,) =0,
hence, we can replace D(w, k) on the right h_and side of (25) by —2kk,c%. Also, since
k. = w/c we approximate D(w, k,) by —=2c%k,(k, — (w? — w}/y,)"¥c). The dispersion rela-

tion can now be put into the simple form

(k = (K + k) (k = (@/v,, + 1)) (k = (/v — &) = —221 k,, (26)

where

K = (w? = wlly,)"e, H
K= wy/(¥1 V20 ¥,

a? = (Q,/ck,)? (w@/(y3v2)) = (£Boy k,)2,

11




‘
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pﬁl - no/(yo mGo)'
and
£ = w,/(\fy, ck,).

Further simplification of (26) is obtained by setting

k = w/v,, +x + 8k 27

where 8k is in general complex and [8 k| << k. Since v,, = cand @ >> w,/\/yq, We find that

K = a/c — £k,/(4y2), x = Ek,/v., so that (26) reduces to

8k Bk + 2¢k,/v,,) 8k — Ak) = —a’k,/2 (28)

where Ak = k, — @/(2cy2) is a mismatch parameter. At this point it is convenient to evaluate
the difference between the phase velocity of the longitudinal wave and the initial axial beam

velocity in the high gain limit. This velocity difference is given by

Vor = ¥z = —Av = w/Re(k) - v,

o =(x + Re(®k)) ¢

23k, (29)

where we have used the expression for k in (27). The expression for Avin (29) will be used
later to obtain an estimate for the saturation efficiency and maximum radiation field. We now

discern two important limits of the dispersion relation (8).
a) Weak Pump Limit

For a pump magnetic field amplitude such that 8,, << B, = 4(£/y2)"? the space

charge potential dominates the ponderomotive potential and collective effects are important.'*

RES SN

T T TTESOVES A e
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That is, in this case the electron susceptibility x = —(w — v.,k) 2w}/(y2y;) is approximately
—1 and the electrostatic wave is nearly an eigenmode of the system. This regime of scattering

corresponds to setting |8k | << 2¢k,/y., in the dispersion relation (28), which becomes

8k (8k — Ak) = —a’y_,/(4¢) - (30
with the growing root given by
- M -i_ a 7..'0 o 2
Sk > + 3 5 (Ak)* . 31

The condition for instability is clearly a’y.,/¢ > (Ak)? and the maximum spatial growth rate

occurs when Ak = 0 and is

I max E—lm(&k.)m“ £ %BmeY:u ki .. (32)

Using (32) we see that the condition b k| << 2¢k,/v., is equivalent to the weak p‘ump‘condi-

tion, i.e., Byy << B.;- In this FEL regime we find that

o (Eklye, + 8K/D)

33
2y2k, 4

Vo — Voo = —Av
where (31) has been used for Re(8k), and Ak € VEv., Buik,.
b) Strong Pump Limit

In this regime the pump magnetic field amplitude is sufficiently strong to satisfy the in-
equality 8,;, >> B, =4(¢/v3)'"?. The ponderomotive potential, which is proportional to the
pump amplitude, completely dominates the space charge potential in the strong pump regime'*

and |x| << 1. This is a single particle scattering regime where collective effects are negligible.
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For B, >> B... we neglect 2¢k,/y-, compared with 8k in (28) and the dispersion relation be-

comes
(Bk)? (8k — Ak) = —a’k,/2. (34)

The maximum spatial linear growth rate occurs for exact frequency matching, i.e., Ak = 0, and

is given by
Tax = ~Im(8k) oy = 2,—‘/,5,«5..1)”’ k,. (35)

while at this frequency Re(8k) = (£8..)%°k./2*. The real part of 8k, which is a function of
Ak, has the maximum value Re(8k) . = (£€B8,1) ¥k, when Ak = -;-(fﬂ..l)z/ 3k,. The velocity

difference in (29) also attains its maximum value when Re(8k) = Re(8k)n,, which is the point
where the growth rate vanishes. As we shall see in the next section, the energy extraction is
propertional to Av, and hence the maximum efficiency is attained close to the point of vanish-

ing growth rate.
V. SATURATION LEVELS

To obtain estimates for the saturation levels in the different FEL regimes we resort to ar-
guments based on electron trapping.'* In the cold beam limit, we assume that saturation occurs
when the beam electrons become trapped in the total longitudinal wave, i.e., space charge plus
ponderomotive potential. The difference between the longitudinal wave phase velocity and the
axial electron velocity is initially v,, — v,, = —Av, where the difference Av is greater than zero
for instability and depends on the particular FEL regime as well the frequency mismatch param-

eter Ak [see Eq. (32)]. Assuming all the particles to be deeply trapped, we
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may estimate that at saturation v,, — v,,, = Ab where v,_,;, is the average axial electron veloci-
ty at saturation and v,, is assumed to remain fixed. The maximum decrease in the axial beam

velocity is ~2Av, corresponding to a change of particle kinetic énergy by an amount

AExp = —;of-lvz-,m Av)m,c?
-2y, ¥ m, v, Av. (36)

The energy conversion efficiency is, therefore,

~AExe
(y, — 1) m,c?
Similar arguments have been used to obtain good estimates for efficiency in two-steam interac-

n= =2y A v/ 37

tion processes.”’ The vector potential at saturation, z = z,,,, can be found by applying the con-

servation law for total energy flux. The result is

2)2 /2
£y, m,c l 1,l ‘ 45

2y2 le]

|4 @z = 2,)] = lli(z =0’ +

In the low gain FEL limit, described in section III, the efficiency which is given by Eq.

(37) together with Eq. (23) is

20,
= —Tk:' (39)

for the highest gain band, 8, ranges from 0 to -3. The maximum gain occurs when 0, = -1.3

and is given in Eq. (21). The amplitude of the vector potential at saturation is

{AG =z, =L)|={A@=0]+G,). - ; (40)
Comparing (38) with (40) we find that the input signal needed to cause saturation at z = L is

- ol 670 m;".l ’ n

with G, given by Eq. (21).
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In the high gain, weak pump FEL regime discussed in section 1Va, the efficiency.is .

n = (€/y., + AK/(2k,)) i A 42)
where we haye used Eq. (33) in conjunction with (37), noting that the. mismatch parameter is
Ak < +/€y., Boyk,. Equation (42) is valid in the high gain, weak pump plnméter regime and
hence, the second term is somewhat siniller than the first. Tlie amplitude of the vector poten-

tial at saturation in this case is

- = €vo mocz 12
|A(z z,,,)|~lzvzzo e |7 (43)

where Eq. (38) was used together with the condition |4 (z = z,,)| >> [4(0)|.

" Finally, we consider the high gain-strong pump case. The efficiency, using Egs. (29) and

(37), is given by

"_[ne:ak) e 4 | @4)

0 Y20

where Re(8k) < (¢8.,,)%°k,, the equality holding where the spatial growth rate vanishes.
When the growth rate is maximum (see Eq. (35)) the efficiency is

n=2"Y3B,0) + &/ (45)
The second term in (44) is small compared to the first in the strong pump limit. The saturated

value of the vector potential is given by Eq. (43) together with (45).
VL. GROWTH RATE (GAIN) VS. B, FOR FIXED OUTPUT FREQUENCY

It is of interest to determine the scaling laws for the growth rate (or total gain) and
efficiency, for a fixed output frequency, as a function of the magnetic pump amplitude B,. To
obtain these scaling laws for a fixed output frequency w = 2yl ck,, i.e., fixed y,, and k,, we

note that the total gamma can be written as
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Yo =v-(1 + (|e|B,/m,c?k,))'"? (46)
Therefore, when B, approaches and becomes larger than the critical magnetic field amplitude,

B, = (m,cY\e)) k, = (10.6/1lem)) kG : 47
the axial gamma, vy., becomes significantly smaller than the total gamma Y.- For fixed y., and
k, when B, << B, the total gamma is nearly equal to v-.» when B, >> B_.. however,

7" = 7:"3"/8(""'

In the low gain FEL regime, Eq. (21) shows that the maximum total gain is proportional
to B} for B, << B,,, and falls off as B,”' for B, >> B,,,. The efficiency given in Eq. (39) is

independent of the pump magnetic field amplitude for fixed y., and k..

In the high gain-weak pump FEL case the maximum spatial growth rate, see Eq. (32), is
proportional to B, for B, << B,,, and decreases as B,”\* for B, >> B,,. The efficiency on
the othgr hand, see Eq. (42) is independent of B, for B, << B,,, and falls off as B, '/ for
8, >> B,,,. For the high gain-strong pump case Eqgs. (35) and (45) shows that for B, << 8,

both the maximum growth rate and efficiency increase as B* whereas for B, >> B,,, both the

growth rate and efficiency fall off as B,”'/.

These scaling laws for fixed output frequency indicate that for all the FEL regimes which

have been considered, the optimal magnetic pump amplitude is one where B,=8,,.
VIiI. DISCUSSION
(a) Energy Shear

In the preceding formulation of FELs, we have neglected any effects of energy shear
across the beam. Such a shear arises owing to the self electrostatic potential drop within the

beam. This leads to a radial dependence of the beam kinetic energy in the equilibrium state.
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The energy shear results in a shear in the axial equilibrium velocity across the beam and, there-
fore, is equivalent to a beam temperature. For an axially propagating beam of radius r, the

effective beam temperature is of order

2

where A¢ is the self potential drop across the beam from r = 0 to r = 7, and E, =(yq—1)m,c?

2
kﬂ 0
AE=|e|ad = (5—'—] E,

is the kinetic energy of the electrons. A necessary condition for the validity of the cold beam

approximation, in all the FEL regimes which have been considered, is

AE/E, << .

This inequality may be invalid at sufficiently high beam densities.

A more refined analysis taking account of the energy shear should also consider the radial
gradient of the pump field, which is necessary to satisfy V - B, =V x B, =0. The radial
dependence of the pump produces a shear in the eqiulibrium transverse velocity which will tend
to compensate for the shear in axial velocity due to self field effects. Other possible approaches
which may be considered to eliminate the axial velocity shear include (i) establishing Brillouin
flow in the beam by applying an axiai magnetic field or (ii) creating the beam on a non-
equipotential surface so that the applied potential shear just cancels out the self potential shear.

In the following example self-field effects will be neglected.
(d) Two Stage FEL

As an illustration of a far infrared radiation source we consider a two-stage FEL generator.
In a two-stage FEL, two consecutive and distinct scattering processes take place within a single
electron beam. The output radiation from the first stage, in which the pump is a circularly po-

farized static magnetic ﬁel&, is reflected dback on the beam and used as the pump wave in the
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second stage. This configuration is schematically depicted in Fig. (2). Thq .ﬁnal_ ,v{a_yelqnglh of
the output radiation, from the second stage is A = //8y¢ instead of //2y? as would be the case
m a sinjle siéée de\;i';:e. lien?é, ina W(; ‘s‘iage FEL fa} shérter ou_tp;nl wa;rclengihs can be real-
ized for the same electron beam energy. The pump field in the secona stage is a circularly p;r
larized electromagnetic wave and not a circularly polarized static magnetic field as in Eq. (1).
Our results for a magnetic pump, however, also apply to a circularly polarizated electromagnetic
pump if the electron beam is highly relativistic. To see this we note that in the beam frame,
the two pump waves are equivalent if we set By, = 2E,(z = z,,) and k¢, = 2 k,, where By, and
ko is the magnelic field amplitude and wavenumber of the equivalent magnetic pump in the
second stage and E,(z = z,,) and k,, is the saturated electric field amplitude and wavenumber
of the reflected output radiation from the first stage. The relevant parameters for this example
are contained in Table . The results outlined in Table I demonstrate that in principle a rather
low energy electron beam (£, = 3MeV) is necessary to generate far infrared radiation using a 2
cm wavelength magnetic pump. The radiation to beam power efficiency of 0.085% may be
greatly enhanced by adiabatically varying the longitudinal wavelength of the electromagnetic
pump in the second stage. Contouring the pump period for the purpose of enhancing efficiency

has been suggested in Ref. (14).

Recent non-linear calculations have shown that efficiency enhancement factors greater
than 100 can be achieved by varying the wavelength of the static magnetic pump field.>* In the
case of an electromagnetic pump the axial wavelength may be contoured by varying the
waveguide wall radius. Work is now underway at the Naval Research Laboratory to fully evalu-

ate this approach.
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Table 1 — lllustration of a Far-Infrared (A = 2um)

Electron Beam

Two Stage FEL

Energy: Eq = 3 MeV (yo = 7), Current: /; = 10 kA, Radius: ry = 0.3 cm.

First Stage Second Stage

Pump Amplitude Bo; = 5 kG By = 2E,(z = z,) = 15.7 kG
Pump Wavelength logg = 2 cm lgp = A\/2 = 0.019 cm
Longitudinal Gamma v = 5.1 y:2=1
"Beam Strength Parameter & = 0.61 £ =£,/(4y2) =59 %107
Transverse Velocity Ba 1 = 0.135 Barz = 0.4 x 1072
Critical Velocity B = 0.27 Beiz = 1.65 x 1072
Output Wavelength A; = 0.038 cm Ay =20pum

| Spatial Growth Rate T axy = 0.37 cm™ T2 = 0.13 cm™!
Efficiency m = 12% " m, = 0.085%
Output Power Py = 3.6 GW Py, = 25 MW
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FEL CONFIGURATION

OUTPUT RADIATION

X =22 5 .
E BEAMZ o 2y2 ck,, kycwk, kor2w/8
P e 2
g 1ot WWW—
4 4 4 : 1
e T2
\ { |

{ ]
\ -2
STATIC CIRCULARLY POLARIZED

MAGNETIC PUMP

Figure 1 — Schematic of the free electron laser model. The adiabatic build-up of the pump field is
not shown, and occurs to the left of the figures where the unmodulated beam enters.

SCHEMATIC OF A TWO STAGE FEL

_2nd STAGE _  _ ist STAGE

OUTPUT
RADIATION | A,

VATAVAV p
E-BEAM ——— é

VoV AN~

A Ay

REFLECTOR

Ny J

—————  STATIC MAGNETIC
EM PUMP PUMP

Figure 2 — Schematic of the two-stage free electron laser concept. The electron beam enters at
left. Radiation scattered at wavelength A; from the static magnetic pump of wavelength / in the
first stage is reflected to act as an electromagnetic pump in the second stage. The final scattered ra-
diation is at wavelength Ay=~ //(8 y,).
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